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The problem of the bifurcation of the equilibrium positions of conservative systems whose potential energy is independent of
the signs of the variables that occur in it is discussed. A method for the sequential determination of the equilibrium positions
of such systems, beginning with the trivial ones, in order of their increasing complexity, is proposed. © 1998 Elsevier Science
Ltd. All rights reserved.

It is well known that the problem of finding the equilibrium positions or steady motions of conservative
mechanical systems and of investigating their stability reduces to the problem of analysing the critical
points of the potential energy or reduced potential energy of this system. Critical points of the potential
energy are found from the system of non-linear algebraic equations, the complete investigation of which
often involves considerable computational difficulties. Fortunately, in mechanical problems the potential
energy is often invariant to some change of variables, which is due to the presence of some discrete
groups of symmetries in these problems. This property enables one to determine the simplest classes
of solutions of this system of algebraic equations solely from considerations of symmetry. The presence
or absence of other (asymmetrical) classes of solutions remains an open question. The solution of this
problem depends largely on the properties of the simplest solutions when the physical parameters of
the mechanical system change. If the index of the second variation of the potential energy, calculated
for some simplest solution, changes when the physical parameters change, then, by bifurcation theory
[1], other classes of solutions certainly exist. The method of constructing these solutions, it is true, still
remains an open question.

In this paper we describe a method for the sequential determination of the non-trivial equilibrium
positions (steady motions) in order of their increasing complexity. This method is based on the symmetry
properties of a mechanical system and the properties of the second variation of the potential energy,
calculated for the equilibrium position (steady motion) of the previous level of complexity, beginning
with the trivial one.

1. Suppose V(x; p) is the potential energy of the system (initial or reduced), x = (xy, . . ., x,,)" is the
vector of the system coordinates (in the general case, dependent), and p = (py, - . ., p.)" is the vector

of the physical parameters (the superscript T denotes transposition).
We will assume that

V(-1)'x; p)=V(x; p) (s=(s5y, ... s,,)T, 5;=0orl)

(=D x=((-1)"xy, ..., (1) x,)7

In other words, we will assume that the function V(x; p) can be represented in the form
Vix; p) = W(E; p) &, =x?, i=1,.,n) k (1.1)
In many applied problems of mechanics it is usually more convenient to use dependent variables. We

will therefore assume that the x coordinates are connected by the relation f(x) = 0, which defines a
compact space of the system configurations, which is also invariant under the replacement x — (-1)*x.
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For simplicity we will confine ourselves initially to the case of an (n — 1)-dimensional sphere
fx)=xl+. . +x2-1=0 1.2)
To find the critical points of the function (1.1) in the set (1.2) we will introduce the function

2F = W + Af, where A is a Lagrange undetermined multiplier, and we will write the conditions for it
to be steady with respect to the variables x, A

oF (oW oF 1
—={—+A|x;=0, i=l, ..., n; —=—=f=0 1.3
ax, (ag,.+ ]x' : a2 (L3
It is obvious that system (1.3) has the trivial solutions
X =%, x;=0 (j#a) a=1..n 14)
A=Ay = _[a_w] (15)
aé“ (1.4)

To determine the nature of the critical points (1.4) we will calculate the second variation 8°F of the
function F in the linear manifold &f = 0 (taking (1.5) into account), which, for solution (1.4) has the
form &x, =0

28°F = 3 ¢\ (8x;)% ¥ =

jro

oW oW (@)
- - =c; (p) (1.6)
I:aE-'!' o :|(|.4) !

Thus the following assertion holds.

Assertion 1.1. The function (1.1) on the sphere (1.2) always takes critical values at the points (1.4),
and its second variation at these points always has the form of the sum of squares (1.6).

We will consider some of the trivial solutions (1.4) and we will assume that, for certain values of the
parameters, one of the Poincaré coefficients of the second variation (1.6) changes sign, while the
remaining coefficients keep their sign. Then, for these values of the parameters, the index of the second
variation changes and, by bifurcation theory, other solutions branch off from the trivial solution
considered. In the general case, a search for these non-trivial solutions is a difficult problem to solve.
However, in this case (a symmetric potential and a symmetric configuration space) we can suggest a
quite simple method of constructing these solutions.

Suppose for solution (1.4) the coefficient cg’) changes sign in a certain set

Py ={peR™:c{*(p)=0} Ln

where c}"‘) # Owhen j# P and p € Pg‘). We will seek solutions of system (1.3) in the form
(¢ # 0/mod n/2)

Xy =tcos®, xg=tsing, x;=0 (jza, p) (1.8)

Substituting relations (1.8) into (1.3), we obtain

aw. oW
af op
+A=0, +A=0 1.9
&g o€y (19)

where Wyg = Wy 3), while the remaining equations of system (1.3) are satisfied identically with respect
to @ and A. Subtracting the first equation of system (1.9) from the second, we have

Do (9; P =2 -—"2 =0 (1.10)
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According to the above assumptions, the function ®.g(0; P) = cg’)(p) changes sign when p € P§ tp
will fix the value of p,, close to the set P§, so that ®@a(0; P) > 0. Here, by the continuity for all
@ € (-9, 8), where & > 0 is sufficiently smalf we have

Do (9; p,)>0 (1.11)
Similarly it can be shown that when ¢ € (-9, )
Dop(9; p)<0 (1.12)

(the value of p_is close to the set P§ and ®(0; p_) < 0). It follows from relations (1.11) and (1.12) (taking
(1.1) into account), that Eq. (1. 1053 has the pair of solutions

® = £Qap(pP) (1.13)

where @,3(0; P) = 0 for p € P; here (see (1.9))

oW ow |
A=A o=— — =] — 1.14
* [aa-‘“ ](1.8) [325 :I(I.S) 9

Note that for valucs of p close to Pg‘), system (1.3) has no solutions, unlike (1.4) and (1.8),
since it follows from (1.3) thatx; = 0 (j # o, B; p is close to Pg) in view of the assumption c( )(p) =0
(= B;pe Pﬁ“) The solutlons (1.8) certainly exist for values of the parameter p Wthh lie in the
neighbourhood of the set P§, but they may also exist outside this neighbourhood (the latter depends
on the properties of the function ®qg in each specific case).

To determine the nature of the critical points (1.8) (see also (1.13) and (1.14)) we will calculate the
second variation 8°F in a linear manifold &f = 0, which, for the solution (1.8), has the form

(08 Qo Yy, + (sin @g )Bxg = 0

(by virtue of the symmetry of the problem here and henceforth all the solutions (1.4), (1.8), etc. are
taken with the upper signs).
Hence, &, = —(tg ¢op)dxp and

28°F= 3 ¢\ (8x;) (1.15)
jro
opy _| OW oW = B (p) (j
=] ——— =¢; 7 (p)(i#B)
! [agf %o (1.8) !

W . W szw] .
P = [ -2 + sin2 @ =¥ (p)
B 2 2 off
2 A ”

Thus the following assertion holds.

Assertion 1.2. If bifurcation values of the parameters (1.7) exist for the trivial solution (1.4), the function
(1.1) on the sphere (1.2) takes critical values at points of the form (1.8), and its second variation at
these points has the form of the sum of the squares (1.15).

The coefficient c[s )(p) obviously vanishes, but it does not change sign when p € Pé"), since in this
case Qqp(p) vanishes. If this ooefﬁcxent vanishes and changes sign for certain other values of the
parameters (due to the coefficient of sin (paﬁ) then it can be shown in the same way as before that the
function @,p(p) loses its uniqueness. In this case, there is one other class of solutions of the form (1.8)
(but with a dlfferent function @yp(p) and not in the neighbourhood of the set (¢ = 0; PB ) in the space
SxR™(@e S,pe R™).

The case in which one of the other Poincaré coefficients, say c(“ﬂ) (v# B), changes sign in a certain
set

P;ap) - {p e Rmzc§aﬁ)(p) - 0} (1.16)
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is of considerable interest. Here, as previously, we will assume that the remaining coefficients of the
second variation (1.15) do not vanish when p € Py“". Then, the following solutions branch off from
solution (1.18) (¢, ¥ # 0/mod n/2)

Xq =tcos@cosy, xg= tsin@cosy

A7
xy =tsiny, x;=0(#0a, B, 7) (L17)
In fact, substituting (1.17) into (1.3) we obtain
aw, oW,
Mapy yaz0, Toubr oo by g (1.18)

agu ai[} agy

where Wog, = W(1.17,, and the remaining equations of system (1.3) are satisfied identically with respect
to @, ¥ an aaﬁ A Subtractmg the first equation of system (1.18) from the third and second, we have

aw, ow,
= ofy ofy |_

oW, oW,

Note that when v = 0, Eq. (1.20) becomes (1.10), while the left-hand side of Eq. (1.19) becomes the
coefficient c{®® of the quadratic form (1.15). Consequently, we can determine ¢ = Popy(V, p) from Eq.
(1.20) for alf\v close to zero, where §qp,(0, P) = Qop(p). Substituting Py, into (1.19) we have

Dy, (W, P)= Do (T, (W, PHY;P)=0 (1.21)

Existence of the solution y = *y5.(p) of Eq. (1.21) is proved in the same way as the proof that the
solution of Eq. (1.10) exists. Hence, system (1.19), (1.20) has a solution of the form

P =%Qup,(P), V=2V, (P) (1.22)

(Popy (P) = Popy (EWopy (P): P))

A= Xap.{ = _[B_W] =0, B. T (1.23)
8§p (1.17)

Note that for values of p close to PP, system (1 3) has no solutlons, unlike (1.4), (1.8) and (1.17),
since it follows from (1.3) thatx; =0 (j # o, B, v; p is close to P oB)). The solutions (1.17) certainly exist
for values of the parameters p which lie in the nelghbourhood of the set P(“B) but they may also exist
outside this neighbourhood.

To determine the nature of the critical points (1.17) we must calculate (taking (1.22) and (1.23) into
account) the second variation 8°F in the linear manifold 8f = 0, which for the solution (1.17) has the
form

(COS @y COS Y o5, JOX, + (SN P gy COS W o, )8xg +(sin Y g, )Ox, =0

Hence
282F =[282FI®N + (282 F1Y) (j=o, B, V) (1.24)
[282F1PY) = agg (8xg P + 245, (83 )(8x, )+ ayy (8%, )’ (1.25)
282F1) = 3 () (8x;)? (1.26)

j=a By
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Explicit expressions for the coefficients a,, (p, 0 = B, v) and cj(-"m) (j# o, B, v) are fairly lengthy and
are therefore not given here.
Thus the following assertion holds.

Assertion 1.3. If bifurcation values of the parameters (1.16) exist for non-trivial solution (1.8), the
function (1.1) on the sphere (1.2) takes critical values at points of the form (1.17), and its second variation
at these points has the form (1.24) and is the sum of two quadratic forms, one of which depends on
two variables and, generally speaking, does not have a diagonal form, while the second depends on the
remaining independent variables and has a diagonal form.

Note. The index of the quadratic form (24) changes for the same values of the parameters p for which
either the determinant of the quadratic form (1.25) changes sign (in this case the functions @ag(p) and Wop/(p)
lose their uniqueness and no solutions appear which differ in principle from (1.17)), or one of the coefficients of
the quadratic form (1.26) changes sign. In the latter case, solutions of the following form bifurcate from solutions
(1.17)

Xg = £C05 @ COs Y cos X, xg = *sin ¢ cos Y cos X

Xy=1sinycosy, xs=itsiny, x=0 (#0,8,7 98

where the subscript 8 corresponds to the Poincaré coefficient c;®®?, which changes sign, etc.

To conclude this part of the paper we note that to find the non-trivial solutions (1.8) it is sufficient
to solve one non-linear algebraic equation (1.10), to find the solutions (1.17) it is sufficient to solve a
system of two such equations (1.19) and (1.20), etc. Even if it is impossible to obtain solutions of these
equations analytically, an analysis or numerical solution of them is much simpler than an analysis or
numerical solution of the initial system of equations (1.3).

2. We will now assume that the potential energy depends on 2 variables x = (xy, . . ., x,)  andy =
(1, - - - »yn)", where

Vi y; p)=WE W p) & =x}, n,=)}) 21
and the variables x and y are related by the equations
F(x)=x} +..+x2-1=0, gx)=y? +..+yi-1=0
h(X, Y)=xy +..+x,y,=0 2.2)
To find the critical points of the function (2.1) on the set (2.2) we introduce the function 2F = V +

Af + ug + 2vh, where A, , v are Lagrange undetermined multipliers, and we write the conditions for
it to be steady with respect to the variables x, y, A, [, v

oF (oW

'aTi—['a—g-i-'f'X)xi'l-Vy,-—o

oF _ 21+ +vx; =0, i=|

ay,' avi u yi i =Y, =L ..,0n ‘ (2.3)
oF 1 _ oF 1 _ oF _,

- 2f=0 =780 y=h=0

System (2.3) obviously has the following trivial solutions

Xg=%l, yg=%1 (a#p)

24
x=0 (j#a), y,=0 (k#P) 24)



14 A. V. Karapetyan and 1. I. Naralenkova

ow oW
A=A p=—f — = =27 =
o8 l:aéa](bi), H=He [6'5:'24)‘ V=0 @)
. (2.

To determine the nature of the critical points (2.4) we will calculate (taking (2.5) into account) the
second variation 8°F of the function F on the linear manifold 8f = 0, 8 = 0, 84 = 0, which for solutions
(2.4) has the form &, = 0, dy = 0, &xg + 8y, = O (here and henceforth, in view of the symmetry of
the problem, all the solutlons are taken with the upper sign). Hence

282F = 3L\ (8x;)? +d°P By, )2 1+ [cf® + d{*P)(82) (2.6)
j=a.p
8z = Bxy = ~8y,,

aW oW oW oW
c(_aﬂ) = [_ - _J (o) d(ap) [: :I k#PB)
! aE-‘J ag“ (2.4) ank anB (2.4)

Thus the following assertion holds.

Assertion 2.1. The function (2.1) of the set (2.2) always takes critical values at the points (2.4), and
its second variation at these points always has the form of the sum of the squares (2.6).

We will consider one of the trivial solutions (2.4) and we will assume that for certain values of the
parameters of the Poincaré coefficients of the second variation (2.6) changes sign, while the remainigé
coefficients do not vanish for these values of the parameters. We will initially assume that c§°‘m ord
(y#a, B) changes sign. Then, in exactly the same way as in the previous section, it can be shown that
system (2.3) has non-trivial solutions of the form

Xq =%cos@, x,=xsing

yp=2L, x;=y, =0 (j#a, v; k=p) 2.7
(if c.(,“ﬁ) changes sign) or

Xo =%1, yp=%cos@, y,=zsing

x;=y =0 (G#o;, k=P, y) (2.8)
(if A" changes sign). Here
9 =10, (p): Py, (¢, pP)=0 (2.9)
W Wy,

¢’apy= aCY - aC, > WaBy=W|(2.7)or (2.8) =€ or M

aw w
A= ;\'O-B = _[f] s K= l-lapy = _[ o } , v=0 (210)
@ 1(2.7) or (2.8) anB (2.7) or (2.8)

The second variation 8°F is calculated on the linear manifold & = 0, 8 = 0, 8 = 0 which, for solution
(2.7), has the form

cosQdx, +sin@dx, =0, Byz =0, cos@dy, +sin@dy, +8x3 =0 (2.11)
while for solution (2.8) it has the form

8x, =0, cos@dy, +sindy, =0, cos@dxg +sin Pdx, + 8y, =0 (2.12)
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Hence
[282F)y 7, =[282F1**81 4 252 FYTieD) (2.13)

[267Flp 5y = [287F/**B) 4 282 Y11 (214)

[2321:](]*01-5.7) > [C(aﬂv)(ax )2+d(aﬁ7)(8y )2]
jra.B.y

[262FYT ) < P (B )? + g (Byq)” + 2biay (By XByy ) + by, (By, )2
(282 F1®1Y) = gy (8x5)” + 2ag, (B X8, ) + ayy (B, ) +dSP (Byy)?

(explicit expressions for the coefficients of the quadratic forms (2.13) and (2.14) are quite lengthy and
are therefore not given here).
Thus the following assertion holds.

Assertion 2.2. If bifurcation values of the parameters ¢ (“B)(p) 0 or d,“®(p) = 0 (y= 0, B) exist for
the trivial solution (2.4), the function (2.1) on the set (2 2) takes critica ]values at points of the form
(2.7) or (2.8) respectively, and its second variation at these points has the form (2.13) or (2.14).

Note. Solutions &577) and (2 8 are to some extent analogous to solutions (1.8), consndered in the prevnous section.
The coefficients c )(p) or d )(p) of quadratic form (2. 13) or (2.14) vanish when c (p) =0or d, (p) 0.1f
these coefficients changc sign for some other values of the parameters, the functions <p,,m(p) lose their uniqueness.
If some other Poincaré coefficients ¢; (“B")(p) ord; @N(p) (i a,B,7)of quadratic forms (2.13) and (2.14) or expres-
Sions begby b?ﬂ and apy,,— a.i., correspondmg to these forms change their signs, non-trivial solutions of the second
level, etc. wnll bifurcate from solutions (2.7) and (2.8).

We will now consider the case when the Poincaré coefficient cb(“’” + d, (B) of the second variation
(2.6), calculated for the trivial solution (2.4), changes sign on a certain set

Py =(peR™:ciP(p)+d P (p)=0) (215)
Here, as previously, we will assume that the remaining coefficients of the second variation (2.6) do not
vanish on the sets (2.15).
In this case the following solutions bifurcate from solutions (2.4)
Xy =tcosQ, xg=tsin@
Yo =Fsing, yg=zxcosp, x;=y;=0 (j=a, B) (2.16)

In fact, substituting (2.16) into system (2.3) we obtain (as previously we take the upper signs in relations
(2.16))

oW, IMWg
(-——i+x)cos<p—vsin(p=0, —.a sing@+vcosp=0 (2.17)
&, a&p
oW, oB BWap
—cr+u sin@+vcos@p=0, —é;;—+|.l cos@+vsin@=0
where Wz = W| 3 16), While the remaining equations of system (2.3) are satisfied identically with respect
to @, A, pand v. iihml nating the undetermined multipliers from (2.17), we obtain
Bop @ D)= D2 (1-5i00) 2 cosp 4 01 _gin gy - 58 0 (218
y P)= —2 - sin - Cos ~Ssmn - CoOsSP = .
8 %, Ty P Tn, (TINOTTy, @18)
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By the above assumptions ®,(0; p) = c(gm(p) + d{"®(p) changes sign on the set (2.15) and hence the
analysis of Eq. (2.18) is analogous to the analysis of Eq. (1.10) carried out earlier. Hence, Eq. (2.18)
always has a solution of the form

¢ = 19op(P) (2.19)

for values of the parameters lying in the neighbourhood of the set (2.15).
Moreover, taking (2.19) into account it follows from (2.17) that

oW oW .
A=A =—| ==—cos@+——sin@
(!-B [aga aga :|(2.16)

H=H.g = —[ﬂ-cos(p+ oW sin(p]
b anﬁ ana (2.16)

v=V [ 4 sin@ oW cos (p:I _,[E)W cos P ow sin (p}
= 8 =| — —— = —_——
"% %p (2.16) M Mg (2.16)

The second variation §°F is calculated on the linear manifold &f = 0, & = 0, &h = 0, which, for solution
(2.16), has the form

cos Plx, +sin@dxg =0, ~—sin@dy, +cospdyp =0
cos @By, —sin @dx, +sin edyg + cos Pdxg =0
Hence
282F =[287 F1U**P) 4 ¢(82)? (82 = -8y = By,,) (2.20)

[282’;](]#(1.3) = 2 ﬁ[c;aﬂ)(&j )2 + d}aﬁ)(syj )2 + 2e§-aﬂ)(8xj )(8),] )l

j#a,

The explicit expressions for the coefficients c;, d; and e;, and, particularly, e, are fairly lengthy and
are therefore not given here.
Hence, the following assertion holds.

Assertion 2.3. If bifurcation values of the parameters (2.15) exist for the non-trivial solution (2.4),
the function (2.1) on the set (2.2) takes critical values at points of the form (2.16), and its second variation
at these points has the form (2.20).

Note. The coefficient e of the second variation (2.20) vanishes on the set (2.15). If this coefficient changes sign
for certain other values of the parameters, the functions (2.19) lose their uniqueness. If any expression c,d, — e%
changes sign, the non-trivial solutions of the second level, etc. bifurcate from solutions (2.16).

In conclusion we will consider the problem of the relative equilibria of a rigid body in a circular orbit
in a central gravitational field. We will assume that the mass distribution of the body is symmetrical
about planes passing through any pair of its principal central axes of inertia. Then (apart from a constant;
see, for example, [2]) the changed potential energy of the body has the form

M
V=u2—R—3[3(J.Y%+sz%+Jav§)—(J.B.2+Jzﬂ%+laﬁ§)+e2F(y.2. Y3 vh )l @2

Here p is the gravitational constant, M is the mass of the attracting centre, R is the radius of the orbit
of the centre of mass of the body, J;, J, and J; are the principal central moments of inertia, € is the ratio
of the characteristic dimension of the body to the radius of the orbit, y,, ¥, ¥; are the direction cosines
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of the radius vector of the centre of mass of the body with respect to the attracting centre, By, B,, B3
are the direction cosines of the normal to the plane of the orbit and F is a certain function, whose explicit
form depends on the mass distribution of the body. It is obvious that the variablesyand P are constrained
by the relations

YE+yi+yi-1=0, BI+PI+P2-1=0, 7y,B,+7,B;,+7B;=0 (222)
By what was said above, the function (2.21) under conditions (2.22) takes steady values at the points
Yi=%l, B;=%1 (i#)) (2.23)

Y=Yk =B, =B, =0 G, j, k=1, 2, 3)

corresponding to trivial equilibrium orientations of the bodies. Here the ith axis of the body is directed
along the radius vector, the jth axis is directed along the normal to the plane of the orbit, while the kth
axis is directed along the tangent to the orbit.

The second variation of the function (2.21) on a linear manifold &y; = 0, 88; = 0, 8p; * &y, = 0 has
the form (F, denotes oF/oy?)

282V = ¢, (8Y,)? +dy (8B, )* +(c; +4; )3y, )? (2.24)
¢ =3, +I)+e(F,—F)ap, (s=j, k), d,=J;~J, (r=i, k)

In the case of a body with a triaxial ellipsoid of inertia d, # 0. Consequently, there are no non-trivial
equilibrium orientations of the body, for which it turns around the radius vector. If the value of J; is
close to J;, then c; may vanish and change sign for a certain value of €, close to zero. In this case non-
trivial equilibrium orientations are produced of the form

Yi=*cos@, Y, =xsing, B;==*l, y;=P,=p, =0 (2.25)

for which the body is turned by an angle ¢ around the normal to the plane of the orbit. If the value of
Jj is close to J;, then ¢; + d; may vanish and change sign for a certain value of &, close to zero. In this
case the following non- tr1v1al equilibrium orientations are produced

Yi=%cos, Y;=tsing
B =tcos@, B,=Fsing, y,=PB,=0 (2:26)

for which the body is turned by an angle ¢ around the tangent to the orbit. Further analysis of the problem
depends very much on the explicit expression for the function F. Some special cases of problems of
relative equilibria and steady motions of a body were considered previously in [2-5].
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