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The problem of the bifurcation of the equilibrium positions of conservative systems whose potential energy is independent of 
the signs of the variables that occur in it is discussed. A method for the sequential determination of the equilibrium positions 
of such systems, beginning with the trivial ones, in order of their increasing complexity, is proposed. © 1998 Elsevier Science 
Ltd. All rights reserved. 

It is well known that the problem of finding the equilibrium positions or steady motions of conservative 
mechanical systems and of investigating their stability reduces to the problem of analysing the critical 
points of the potential energy or reduced potential energy of this system. Critical points of the potential 
energy are found from the system of non-linear algebraic equations, the complete investigation of which 
often involves considerable computational difficulties. Fortunately, in mechanical problems the potential 
energy is often invariant to some change of variables, which is due to the presence of some discrete 
groups of symmetries in these problems. This property enables one to determine the simplest classes 
of solutions of this system of algebraic equations solely from considerations of symmetry. The presence 
or absence of other (asymmetrical) classes of solutions remains an open question. The solution of this 
problem depends largely on the properties of the simplest solutions when the physical parameters of 
the mechanical system change. If the index of the second variation of the potential energy, calculated 
for some simplest solution, changes when the physical parameters change, then, by bifurcation theory 
[1], other classes of solutions certainly exist. The method of constructing these solutions, it is true, still 
remains an open question. 

In this paper we describe a method for the sequential determination of the non-trivial equilibrium 
positions (steady moti(ms) in order of their increasing complexity. This method is based on the symmetry 
properties of a mechanical system and the properties of the second variation of the potential energy, 
calculated for the equilibrium position (steady motion) of the previous level of complexity, beginning 
with the trivial one. 

1. Suppose V(x; p )  is the potential energy of the system (initial or reduced), x = (xl . . . . .  Xn) r is the 
vector of the system coordinates (in the general case, dependent), and p = (Pl . . . . .  pro) r is the vector 
of the physical parameters (the superscript T denotes transposition). 

We will assume that 

V((-l)Sx; p ) -V(x ;  p) ( s= ( s  n . . . . .  sn) r ,  s i=O or l )  

( - 1 )  s x = ( ( - 1 )  sl x n . . . . .  ( - ! )  s" x . ) r  

In other words, we 'will assume that the function V(x; p) can be represented in the form 

2 . 
V(x; p) = W(~; p) (~i = xi, ! = 1 . . . . .  n) (1.1) 

In many applied problems of mechanics it is usually more convenient to use dependent variables. We 
will therefore assume that the x coordinates are connected by the relation f(x) = 0, which defines a 
compact space of the system configurations, which is also invariant under the replacement x ~ (-1)'x. 
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For simplicity we will confine ourselves initially to the case of an (n - 1)-dimensional sphere 

f (x)  -- x~+...+xn 2 -1  = 0 (1.2) 

To find the critical points of the function (1.1) in the set (1.2) we will introduce the function 
2F = W + Lf, where k is a Lagrange undetermined multiplier, and we will write the conditions for it 
to be steady with respect to the variables x, ~, 

Dx i = +~, xi=O, i=1 . . . . .  n; - f f~ -=~f=0  

It is obvious that system (1.3) has the trivial solutions 

x~=__.l, xj=O (j~:a), a = l  . . . . .  n (1.4) 

3W 
(1.5) 

To determine the nature of the critical points (1.4) we will calculate the second variation 52F of the 
function F in the linear manifold ~if = 0 (taking (1.5) into account), which, for solution (1.4) has the 
form &ca = 0 

j~ct (I.4) 
(1.6) 

Thus the following assertion holds. 

Assertion 1.1. The function (1.1) on the sphere (1.2) always takes critical values at the points (1.4), 
and its second variation at these points always has the form of the sum of squares (1.6). 

We will consider some of the trivial solutions (1.4) and we will assume that, for certain values of the 
parameters, one of the Poincar6 coefficients of the second variation (1.6) changes sign, while the 
remaining coefficients keep their sign. Then, for these values of the parameters, the index of the second 
variation changes and, by bifurcation theory, other solutions branch off from the trivial solution 
considered. In the general case, a search for these non-trivial solutions is a difficult problem to solve. 
However, in this case (a symmetric potential and a symmetric configuration space) we can suggest a 
quite simple method of constructing these solutions. 

Suppose for solution (1.4) the coefficient c (a) changes sign in a certain set 

P~ = {p a R":c~a)(p) = O} (1.7) 

where c! a) ~ 0 when j ~ 13 and p a p~a). We will seek solutions of system (1.3) in the form 
((p ~ O/&od ~/2) 

x a =+cos(p, xl~=f:sin(p, xj=O ( j ~ a ,  [3) (1.8) 

Substituting relations (1.8) into (1.3), we obtain 

3w~ 
OW~o ~-~, = O, ~- ~, = 0 (1.9) 

where Wal~ = WO.s ), while the remaining equations of system (1.3) are satisfied identically with respect 
to 9 and L. Subtracting the first equation of system (1.9) from the second, we have 

_ ~ ( 9 ;  P)ffi ~ ~ a  =0 (1.10) 
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According to the above assumptions, the function ~ ( 0 ;  P) - c[a)(p) changes sign when p ~ P~. We 
will fix the value of p+, close to the set 1~, so that ~ ( 0 ;  P) > 0. Here, by the continuity for all 
~p ~ (-5, ~), where 5 > 0 is sufficiently small, we have 

¢b~C~p; p+) > 0 (1.11) 

Similarly it can be shown that when 9 • (-5, 5) 

O~(¢p; p_ )<0  (1.12) 

(the value ofp_ is close to the set P~ and ~(0; p_) < 0). It follows from relations (1.11) and (1.12) (taking 
(1.1) into account), that Eq. (1.10)has the pair of solutions 

q~ = +q~al~(P) (1 .13 )  

where ~ ( 0 ;  P) = 0 for p • P~; here (see (1.9)) 

(L8) 0.8) 

Note that for values of p close to p~a), system (1.3) has no solutions, unlike (1.4) and (1.8), 
since it follows from (1.3) thatxy = 0 (j ~ ~ 6; P is close to P~) in view of the assumption cj(a)(p) ;e 0 
(j ~ [~; p • p~a)). The solutions (1.8) certainly exist for values of the parameter p which lie in the 
neighbourhood of the set P~, but they may also exist outside this neighbourhood (the latter depends 
on the properties of the function ~a~ in each specific case). 

To determine the nature of the critical points (1.8) (see also (1.13) and (1.14)) we will calculate the 
second variation 5~F in a linear manifold 5f = 0, which, for the solution (1.8), has the form 

(cos ~0~ )~X~ a + (sin q~)~[3 = 0 

(by virtue of the symmetry of the problem here and henceforth all the solutions (1.4), (1.8), etc. are 
taken with the upper signs). 

Hence, ~ a  = -(tg ~ , ~ ) ~  and 

282F= Y c)~)(Sxj) 2 (1.15) 
j#a 

[~W ~W] =c,~)(p)(j,~ ) 

8 w1 
c~ = [ ~ . ~ - ; r ' - 2 ~ +  ~ - ; r e . ~  e~ J,.s, ~in2~°~ = 

Thus the following assertion holds. 

Assertion 1.2. If bifurcation values of the parameters (1.7) exist for the trivial solution (1.4), the function 
(1.1) on the sphere (1.,2) takes critical values at points of the form (1.8), and its second variation at 
these points has the form of the sum of the squares (1.15). 

The coefficient c[~)(p) obviously vanishes, but it does not change sign when p • p~a), since in this 
case q~(p)  vanishes. If this coefficient vanishes and changes sign for certain other values of the 
parameters (due to the coefficient of sin2q~), then it can be shown in the same way as before that the 
function q~(p)  loses its uniqueness. In this case, there is one other class of solutions of the form (1.8) 

Wl ~a) (but "th a different function q~(p)  and not in the neighbourhood of the set (~ ffi 0; e~ ) in the space 
S × Rm(q~ • S, p ~ am)). 

The case in which one of the other Poincar~ coefficients, say c ~ )  (~, ~ l~), changes sign in a certain 
se t  

p ( a • )  = {p • Rm:c~a~)(p) = 0} (1.16) 
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is of considerable interest. Here, as previously, we will assume that the remaining coefficients of the 
second variation (1.15) do not vanish when p e Pv al~. Then, the following solutions branch off from 
solution (1.18) (~0, ¥ ,  0/mod x/2) 

x a = + cos q~ cos V, x~ = + sin ~o cos 

xy=±s inw,  x i = O ( j # a ,  ~l, T) (1.17) 

In fact, substituting (1.17) into (1.3) we obtain 

vL=O, ~-;~ = O, +X=O (1.18) 

where W~@ v = W 017), and the remaining equations of system (1.3) are satisfied identically with respect 
to 9, ¥ and ~.. Subtracting the first equation of system (1.18) from the third and second, we have 

o (1.19) 

-~Wo# v 3 W ~  ] 
• = 0  (1.20) 

Note that when ~ = 0, Eq. (1.20) becomes (1.10), while the left-hand side of Eq. (1.19) becomes the 
coefficient cv (~) of the quadratic form (1.15). Consequently, we can determine ~ = t~v(  W, p) from Eq. 
(1.20) for a l l y  close to zero, where @aO~(0, p) = 9a13(P). Substituting @alvt into (1.19) we have 

~al~(V, P ) "  Oc,#r(~al3v(V, P);V;P) = 0 (1.21) 

Existence of the solution W = --+¥c¢~t(P) of Eq. (1.21) is proved in the same way as the proof that the 
solution of Eq. (1.10) exists. Hence, system (1.19), (1.20) has a solution of the form 

~p = __.cp~(p), ¥ = +_.¥~r(p) (1.22) 

(9~y(p) = ~c,4yr(---W~(p); P)) 

L = L,~: = -  (p =a ,  13, T) (1.23) 
(I.17) 

Note that for values of p close to p{~13), system (1.3) has no solutions, unlike (1.4), (1.8) and (1.17), 
since it follows from (1.3) thatxj = 0 0 4  a, 13, ~ p is close to Pvfal~)). The solutions (1.17) certainly exist 
for values of the parameters p which lie in the neighbourhood of the set P ~ ) ,  but they may also exist 
outside this neighbourhood. 

To determine the nature of the critical points (1.17) we must calculate (taking (1.22) and (1.23) into 
account) the second variation 82F in the linear manifold 8f = 0, which for the solution (1.17) has the 
form 

(cos ~0c, ls r cos ¥o~t)Sxa + (sin q~l~v cos Yat~r)Sxl3 + (sin ¥~r)Sxv = 0 

Hence 

262F=[282F] tl~) +[282F] O) (j ~ a ,  13, T) 

[282F]C13v) = al313 (8Xl3 ~ + 2al~ (~Xl 3)(8x v ) + ar t (Sxv)2 

[282F] (j)= ~, c~) (~x j )  2 

(1.24) 

(1.25) 

(1.26) 
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Explicit expressions for the coefficients apo (p, o = ~, T) and c~ t~) (j • ~, [~, T) are fairly lengthy and 
are therefore not given here. 

Thus the following assertion holds. 

Assert ion 1.3. If bifurcation values of the parameters (1.16) exist for non-trivial solution (1.8), the 
function (1.1) on the sphere (1.2) takes critical values at points of the form (1.17), and its second variation 
at these points has the form (1.24) and is the sum of two quadratic forms, one of which depends on 
two variables and, generally speaking, does not have a diagonal form, while the second depends on the 
remaining independewt variables and has a diagonal form. 

Note. The  index of the quadratic form (24) changes for the same values of the parameters p for which 
either the determinant of the quadratic form (1.25) changes sign (in this case the functions tpat~(p ) and VtC~(P) 
lose their uniqueness and no solutions appear which differ in principle from (1.17)), or one of the coefficients of 
the quadratic form (1.26) changes sign. In the latter case, solutions of the following form bifurcate from solutions 
(1.17) 

x a  = + c o s  ~0 cos  ¥ cos  X, x13 = :l:sin ~ cos  ¥ cos  

x. t = ±sin ~ / c o s  X, x8 = +s in  X, xj = 0 q ~ or, ~, y, 8) 

where the subscript 5 COlresponds to the Poincar6 coefficient cs (al~t), which changes sign, etc. 

To conclude this part of the paper we note that to find the non-trivial solutions (1.8) it is sufficient 
to solve one non-linear algebraic equation (1.10), to find the solutions (1.17) it is sufficient to solve a 
system of two such equations (1.19) and (1.20), etc. Even if it is impossible to obtain solutions of these 
equations analytically, an analysis or numerical solution of them is much simpler than an analysis or 
numerical solution of  the initial system of equations (1.3). 

2. We will now assume that the potential energy depends on 2n variables x = (Xl . . . . .  xn) r and y = 
(Vl . . . . .  yn) T, where 

V(x; y; p) = W(Ij; ~!; P) (~i = x/2, rli = y/2) 

and the variables x and y are related by the equations 

(2.1) 

2 f ( x ) = x ~  + . . . + x , - l = O ,  g ( x ) = y ~  + . . . + y , 2 - 1 = O  

h(x, y ) = x l y  I + . . . + x , y ,  = 0  (2.2) 

To find the critical points of the function (2.1) on the set (2.2) we introduce the function 2F = V + 
+ lag + 2vh, where 'L, It, v are Lagrange undetermined multipliers, and we write the conditions for 

it to be steady with respect to the variables x, y, k, It, v 

OF = + ~. x i + vy  i = 0 
Oxi 

(°÷) O.._(.F = + i.t Yi + vxi = O, i = ! . . . . .  n (2.3) 
OYi 

OF 1 0F 21 _ g = 0 ,  0F 
~ - = - ~ f  = 0, D--if= ~ - = h = 0  

System (2.3) obviously has the following trivial solutions 

x~t =+1, Yll = + 1  ( c t ~ [ 3 )  

x~=O ( j , a ) ,  yk=O (k*13) 
(2.4) 
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[,,'] I, w] . 
: : - ( 2 , , '  " :  : " =  o (2.5) 

To determine the nature of the critical points (2.4) we will calculate (taking (2.5) into account) the 
second variation 82F of the function F on the linear manifold 8f  = 0, ~g -- 0, 8h = 0, which for solutions 
(2.4) has the form &ca = 0, 8y[~ = 0, firl~ + 8ya = 0 (here and henceforth, in view of the symmetry of 
the problem, all the solutions are taken with the upper sign). Hence 

2(~2F = E[ c~a~)(Sxj)2 (c~) 2 (c,~) +dj  (Sy)) ] + [Cl3 + d{aal~) ](Sz) 2 
j ;* a , ~3 

8Z = 6xf~ = - B y  a 

(2.6) 

J = ~ (2.4) (2.4) 

Thus the following assertion holds. 

Assert ion 2.1. The function (2.1) of the set (2.2) always takes critical values at the points (2.4), and 
its second variation at these points always has the form of the sum of the squares (2.6). 

We will consider one of the trivial solutions (2.4) and we will assume that for certain values of the 
parameters of the Poincar6 coefficients of the second variation (2.6) changes sign, while the remaining 
coefficients do not vanish for these values of the parameters. We will initially assume that cv(~) or dv(al~ 
(Y ¢ ~, 13) changes sign. Then, in exactly the same way as in the previous section, it can be shown that 
system (2.3) has non-trivial solutions of the form 

x a  = _+ cos q), x v = _+ sin q~ 

yl~=+l, xj = y k = 0  ( j ;~a ,  y; k ; ~ )  (2.7) 

(if c(v ~°) changes sign) or 

x a  = + 1 ,  Y13 = + c o s ~ 0 ,  yy =+sin~0 

xj =Yk =0  ( j ; ~ a ;  k;~13, y) (2.8) 

(if dv(a~) changes sign). Here 

q~ = +q~c~y(p):q~ar (q~, p) = 0 (2.9) 

3w~v 8w~. 
(I~ctl~q' = ~ y  O~ct ' Wt~'/ = W1(2'7) or (2.8); ~ = g o r  11 

= -  , ~ = ~ a ~  = -  , v = O  ( 2 . 1 0 )  
(2.7) or (2.8) (2.7) or (2.8) 

The second variation 82F is calculated on the linear manifold 8f = 0, ~g = 0, f ih= 0 which, for solution 
(2.7), has the form 

cos~0fix a +sing~xy =0, 8yl3 =0,  cosq~Sy a +sinq~Sy v +Sxl~ =0  (2.11) 

while for solution (2.8) it has the form 

8xa = 0, cosq~Syl3 +sinq~Syy = 0, cosq~xl~ +sinq~Sxy +By a = 0 (2.12) 
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[282F](2.7) = [2~2F](J*a,0,1¢) + [282F] ('/;m'D 

[2~;2F](2.8) = [282F](/#ml!,l¢) + [282F] (1~,1';1') 

[2~2FI(X~mI~,Y) = ~.  [c}°'B'¢)(~o~) 2 +d}alYf)(~)y/) 2 ] 
/*~,l~,v 

[2~i2 Yl(1';ot'Y) = cY t~0Y (~1~)2 + bo.~ (~y~)2 + 2b m (8y~)(8yv ) + b.t. t (8yr)2 

[2~i2 FI(IL'c;y) = al ~ (~Xl 3)2 + 2al~ (&tO)(~c.¢ ) + aTt (~.¢)2 + dyal~ (~YI~)2 

(2.13) 

(2.14) 

Assertion 2.2. If bifurcation values of the parameters c ~ ) ( p )  = 0 or d~) (p )  = 0 (1,# a, 13) exist for 
the trivial solution (2.4), the function (2.1) on the set (2.2) takes critical values at points of the form 
(2.7) or (2.8) respectively, and its second variation at these points has the form (2.13) or (2.14). 

Note. Solutions (2.7) and (2.8) are to some extent analogous to solutions (1.8), considered in the previous section. 
The coemcients c~)(p) or d~"~)(p) of quadratic form (2.13) or (2.14) vanish when c~)(p) = 0 or d~)(p) ffi 0. If 
these coefficients change sign for some other values of the parameters, the functions 9c~!P) lose their uniqueness. 
If some other Poincar6 coefficients c/(~r)(p) or d/(~(p)  (j # ¢x, 13, ¥) of quadratic forms (2.13) and (2.14) or expres- 
sions b~nxb, n -  b 2 and al~lY~ m- a 2 corresponding to these forms change their signs, non-trivial solutions of the second 
level, etc. will bifurcate from solutions (2.7) and (2.8). 

We will now consider the case when the Poincar6 coefficient cl3 (~) + da (~) of the second variation 
(2.6), calculated for the trivial solution (2.4), changes sign on a certain set 

Pc,.O, = {P ,E R':Cl~a~)(p ) + d~)(p) = O} (2.15) 

Here, as previously, we will assume that the remaining coefficients of the second variation (2.6) do not 
vanish on the sets (2.15). 

In this case the following solutions bifurcate from solutions (2.4) 

xc~ =+cos9 ,  x 0 =:t:sin9 

y~=:l :s ing,  yl3=+cos9,  x j = y j = O ( j # a ,  ~) (2.16) 

In fact, substituting (2.16) into system (2.3) we obtain (as previously we take the upper signs in relations 
{12.16)) 

0 (2.17) 

,.,js,n 9 + vcos9 = O. [ W + , . j c o s g + v s , . 9 = O  

where W. = W[ (2 216, while the remaining equations of system (2 3) are satisfied identieallywith respect . ) 
to 9, Z, g and v. Eliminating the undetermined multipliers from (2.17), we obtain 

Ow~,. aW.. 0141.. awoa 
= ~ 1 ~  ~-~--cos9  - - ~ - - - ( 1 - s m g ) - W c o s 9  = 0  ~ ( ~ ;  18)- ~)~= ( 1 - s i n 9 ) -  -" + "'" ' 

~'JtX O~Qt 
(2.18) 

(explicit expressions for the coefficients of the quadratic forms (2.13) and (2.14) are quite lengthy and 
are therefore not given here). 

Thus the following assertion holds. 
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By the above assumptions O~(0;  p) -~ c0Zl~)(p) + d(~)(p)  changes sign on the set (2.15) and hence the 
analysis of  Eq. (2.18) is analogous to th~ analysis of Eq. (1.10) carried out earlier. Hence, Eq. (2.18) 
always has a solution of the form 

~P = +~%I~(P) (2.19) 

for values of the parameters lying in the neighbourhood of the set (2.15). 
Moreover, taking (2.19) into account it follows from (2.17) that 

~" = ~ ' ~  = - [  z-'T-" cos q~ + ~ sin ~l 
k ~  "~I~ J(2.16) 

l a w  a w  . ] 
g = Ix~ = - |~----  cos q~ + ~ sm q~| 

LV'll3 '-" la J(2.16) 

v=v~ l  ~ = l-fir-- sm q~ - --f-- cos q~ / - / ~ c o s q ~ - ~ s m q H  
t- [oq  

The second variation ~i2F is calculated on the linear manifold 8f = 0, 8g = 0, fih = 0, which, for solution 
(2.16), has the form 

cos q~fixa + sin q~SXl~ = 0, - sin q~Sya + cos q~Syl~ = 0 

cos gaSy a - sin ~08x a + sin q~Syl~ + cos q~SXl~ = 0 

Hence 

2~2F = [282F] (j#ct'll) + e(~z) 2 (~z =-~x13 = ~Ya) 

[2~2F](j*a,IB) y. (¢tl~) 2 (alB) 2 + 2e~al~)(Sxj )] = [cj (~r,j) +d) (~yj) )(Syj 
j#ot,~ 

(2.20) 

The explicit expressions for the coefficients cj, dj and ej, and, particularly, e, are fairly lengthy and 
are therefore not given here. 

Hence, the following assertion holds. 

Assertion 2.3. If bifurcation values of the parameters (2.15) exist for the non-trivial solution (2.4), 
the function (2.1) on the set (2.2) takes critical values at points of the form (2.16), and its second variation 
at these points has the form (2.20). 

Note. The coefficient e of the second variation (2.20) vanishes on the set (2.15). If this coefficient changes sign 
for certain other values of the parameters, the functions (2.19) lose their uniqueness. If any expression c~dv- ev 2 
changes sign, the non-trivial solutions of the second level, etc. bifurcate from solutions (2.16). 

In conclusion we will consider the problem of the relative equilibria of a rigid body in a circular orbit 
in a central gravitational field. We will assume that the mass distribution of  the body is symmetrical 
about planes passing through any pair of its principal central axes of  inertia. Then (apart from a constant; 
see, for example, [2]) the changed potential energy of the body has the form 

V=IX-~-R313(J,Y[+J2Y~+J3Y~)-(J,[~+J2~22+J3~)+E2F(Y~, 722, Y~, e2)] (2.21) 

Here Ix is the gravitational constant, M is the mass of the attracting centre, R is the radius of the orbit 
of the centre of mass of the body,./1, J2 and./3 are the principal central moments of inertia, e is the ratio 
of the characteristic dimension of the body to the radius of  the orbit, ¥1, Y2, Y3 are the direction cosines 
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of the radius vector of the centre of mass of the body with respect to the attracting centre, [~1, 1~2, 1~3 
are the direction cosines of the normal to the plane of the orbit and F is a certain function, whose explicit 
form depends on the mass distribution of the body. It is obvious that the variables y and 13 are constrained 
by the relations 

y2 +y2 +,/2 - !  =0, [32 +[~22 +[$~ -1 =0, ~/1[~, +y2[$2 +~3[~3 =0 (2.22) 

By what was said above, the function (2.21) under conditions (2.22) takes steady values at the points 

~/i =+1, ~ j = + l  ( i # j )  (2.23) 

y j=y~=13~=13,=0 (i, j, k = l ,  2, 3) 

corresponding to trivial equilibrium orientations of the bodies. Here the ith axis of the body is directed 
along the radius vector, thejth axis is directed along the normal to the plane of the orbit, while the kth 
axis is directed along the tangent to the orbit. 

The second variation of the function (2.21) on a linear manifold 5~/= 0, 5l~j = 0, 513i --- ~ = 0 has 
the form (Fs denotes ~F/O'~) 

2~ 2 V = c k (57k)2 + dk (8fl k )2 + (cj + d i )(~r/ j )2 (2.24) 

cs=3(Js+Ji)+E2(~-Fi)(223)  ( s=j ,  k), d r = J j - J  r (r=i,  k) 

In the case of a body with a triaxial ellipsoid of inertia d, # 0. Consequently, there are no non-trivial 
equilibrium orientations of the body, for which it turns around the radius vector. If the value of Jk is 
close to Ji, then Ck may vanish and change sign for a certain value of ~, close to zero. In this case non- 
trivial equilibrium orientations are produced of the form 

yi=+costp, y~=+sintp, 13j=+l, yj=13i=13k=0 (2.25) 

for which the body is turned by an angle tp around the normal to the plane of the orbit. If the value of 
Ji is close to Ji, then cj + di may vanish and change sign for a certain value of e, close to zero. In this 
case the following non-trivial equilibrium orientations are produced 

"~i ='t-CO$~ 0, "Yj = + s i n 9  

~j=+costp,  [~i=:[:sintp, y k = ~ k = O  (2.26) 

for which the body is tttmed by an angle tp around the tangent to the orbit. Further analysis of the problem 
depends very much on the explicit expression for the function F. Some special cases of problems of 
relative equilibria and steady motions of a body were considered previously in [2-5]. 
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